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quate availability and, with the introduction of the prophylaxis 

concept, reducing the negative impact of hemophilia on morbidity 

(especially arthropathy). Despite this progress, there are still chal-

lenges to overcome to secure adequate prophylaxis and treatment: 

for the time being, causal pharmacological hemophilia prophylaxis 

and therapy requires repeated i.v. application on a regular basis. 

Although this approach leads to a reduced comorbidity, it does not 

yet represent an optimized approach with continuous reversal of 

the hemophilic defect, which would be the ideal solution.

Therefore, various approaches are actively explored. One path is 

to improve pharmacokinetics of factor concentrates by prolonging 

their respective biological half-lives; this approach is reviewed else-

where in this volume. Another path is to look into completely new 

approaches with very different modes of action than used for the 

treatment of hemophilia so far. Four of them have recently re-

ceived renewed attention as clinical studies have been performed to 

prove the respective concept: reversal of the hemophilic defect 

through gene therapy, inhibition of tissue factor pathway inhibitor 

(TFPI), downregulation of antithrombin by RNA silencing, and 

circumventing the absence of factor VIII (FVIII) using a bispecific 

antibody recognizing factor X (FX) / activated factor Xa (FXa) as 

well as factor IX (FIX) / activated factor IXa (FIXa).

This paper will give an overview on the pathophysiology behind 

these ‘old’ and new approaches and will provide additional data on 

their development, as appropriate.

Inhibition of TFPI

TFPI has been known to play an important role in controlling 

the tissue factor (TF) associated procoagulant response for quite 

some time [1]. TFPI is a multivalent, Kunitz-type proteinase in-

hibitor occurring in three isoforms: TFPI-α, TFPI-δ (a truncated 

form with two Kunitz domains), and glycosyl phosphatidyl inositol 
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Summary
Hemophilia is one of the best researched monogenic dis-
eases. Hemophilia A will affect approximately 1: 5,000 
male live births. In recent decades, great progress has 
been made with the introduction of recombinant pro-
teins in the 1990s for therapy and prophylaxis, securing 
adequate availability and, with the introduction of the 
prophylaxis concept, reducing the negative impact of he-
mophilia on morbidity (especially arthropathy). Despite 
this progress, there are still challenges to overcome to 
secure adequate prophylaxis and treatment: for the time 
being, causal pharmacological hemophilia prophylaxis 
and therapy requires repeated i.v. application on a regu-
lar basis. Although this approach leads to a reduced co-
morbidity, it does not yet represent an optimized ap-
proach with continuous reversal of the hemophilic de-
fect, which would be the ideal solution. This review sum-
marizes the very new treatment strategies for the 
treatment of hemophilia A and B.
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Introduction

Hemophilia is one of the best researched monogenic diseases. 

Hemophilia A will affect approximately 1: 5,000 male live births. In 

the 1990s, great progress has been made with the introduction of 

recombinant proteins for therapy and prophylaxis, securing ade-
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(GPI) anchored TFPI-β. Endothelial TFPI-α represents the greatest 

in vivo reservoir of TFPI containing three Kunitz domains, while 

TFPI-β, through alternative splicing, contains only two Kunitz do-

mains and has an alternative carboxyterminus that directs the at-

tachment of a GPI anchor [2, 3].TFPI inhibits the TF / activated 

factor VIIa (FVIIa) complex via the Kunitz 1 domain as well as FXa 

in the prothrombinase complex via the Kunitz 2 domain [4, 5], 

whereas the Kunitz 3 domain seems to be responsible for the cell 

surface localization of TFPIs [5]. Two decades ago, inhibition of 

TFPI was already shown to shorten ex vivo clotting times early on 

in a dose-dependent manner [6]. Thus, inhibiting TFPIs results in 

shortening of the bleeding time in acquired hemophilia [7] and re-

duction of surrogate markers of hemophilia in hemophilic animals 

as well as hemophilic patients [8–10]. In knock-out studies, platelet 

TFPI was found to be a primary physiological regulator of bleeding 

in hemophilia [11]. Inhibition of TFPI and the respective influence 

on hemostasis can be achieved via various approaches such as the 

use of aptamers [12, 13] or specific antibodies [10, 11, 14].

Aptamers to Inhibit TFPI

The best documented aptamer – initially developed as 

ARC19499, later BAX499 – was generated through systematic evo-

lution of ligands by exponential enrichment using recombinant 

human TFPI. Iterative rounds of selection with identification of 

individual clones resulted in the generation of a 32-nucleotide core 

aptamer, appended with a 3’-idT and a 5’-end 40-kDa PEG moiety 

[12]. BAX499 seems to be able to bind to TFPI simultaneously to 

FXa. BAX499 inhibits TFPI (different than domain-specific anti-

bodies) via the Kunitz 1-, Kunitz 3- and C-terminal domains; and 

its inhibitory activity is reduced in the presence of protein S [15]. 

After binding of BAX499 to TFPI, the TFPI/BAX499 complex re-

tains FXa inhibitory activity, BAX499 delayed TFPI-mediated inhi-

bition of extrinsic tenase activity, and BAX499 reversed TFPI inhi-

bition of the prothrombinase complex [16]. In an experimental 

setting, the TFPI inhibition effect is (expectedly) dependent on TF 

density [13]. Accordingly, BAX499 was found to improve surro-

gate markers of hemostasis in whole blood (thrombelastography) 

and plasma (thrombin generation) from hemophilic patients ex 

vivo [9] and in a dose-dependent manner [13, 17]. However, unex-

pected bleeding occurred in clinical studies – possibly due to an 

increase in TFPI half-life (and thus accumulation) through binding 

of BAX499 without complete inhibition of TFPI activity [18].

Antibodies to Inhibit TFPI

Antibodies to TFPI have long been known to shorten clotting 

times [6], and they were shown to enhance generation of both FXa 

and thrombin [14, 19]. TFPI levels in patients with hemophilia do 

not seem different from those without [20]. Thus, various antibod-

ies have been or are currently evaluated in order to be used in the 

treatment of hemophilia patients [14, 21].

The anti-TFPI antibody concizumab (mAb 2021) binds TFPI 

via the Kunitz 2 domain, thus preventing interaction of TFPI with 

the FXa-active site [10]. It can be applied i.v. or s.c. and displays a 

high bioavailability [22]. A phase 1 study of concizumab suggested 

a favorable safety profile and a concentration-dependent procoag-

ulant effect in healthy volunteers and hemophilia patients [23]. In 

this double-blind, placebo-controlled trial of escalating conci-

zumab doses given i.v. or s.c. to healthy volunteers (n = 28) or he-

mophilia patients (n = 24), no serious adverse events and no anti-

concizumab antibodies were seen. A dose-dependent procoagulant 

effect was evidenced by D-dimers and Prothrombin Fragments F1 

+ F2 [23]. Concizumab was shown to augment results of a throm-

bin generation assay in vitro in plasma of hemophilia patients as 

well as ex vivo after s.c. injections in healthy volunteers [19]. A 

phase 2 study is underway to assess the efficacy and safety of conci-

zumab administered s.c. once daily in preventing bleeding episodes 

in hemophilia A and B patients with inhibitors.

BAY 1093884 is a neutralizing anti-TFPI antibody that can be 

applied i.v. and s.c.; it induces a dose-dependent decrease of free 

TFPI [21]. In vitro and in silico immunoprofiling supporting the 

design of BAY 1093884 suggests a low toxicity potential and im-

munogenicity in humans [24]. A phase 1 study to investigate the 

safety, tolerability, and pharmacokinetics of BAY 1093884 after i.v. 

and s.c. administration of increasing single doses in patients with 

severe hemophilia A or B with or without inhibitors is currently 

underway.

PF-06741086 is another inhibitory antibody of TFPI that inhib-

its thrombin generation in a dose-dependent manner [25] and 

seems to restore hemostasis in an on-demand hemophilia mouse 

injury model when administered after the onset of a bleeding in-

jury [26]. PF-06741086 is being developed for the treatment of he-

mophilia A and hemophilia B with and without inhibitors.

Another observation of clinical importance with regard to TFPI 

in hemophilia patients is that, during the treatment of patients with 

an inhibitor, TFPI levels are found to be higher after treatment 

with activated prothrombin complex concentrates (aPCCs) as 

compared to rFVIIa [27], suggesting that the use of aPCCs might, 

beside the anticipated procoagulant effect, also induce an antico-

agulant effect [28] (whereas the net sum is procoagulant). 

Downregulation of Antithrombin

Reduction of coagulation gene transcription through the use of 

small interfering RNA has been described for various coagulation 

proteins [29]. Silencing of antithrombin has been shown to induce 

a clinically relevant hypercoagulable state outside the hemophilia 

setting [30]. As clinical experience suggests that prothrombotic 

mutations might attenuate the clinical course of hemophilia, an an-

tithrombin RNA interference (RNAi) approach was developed that 

improves thrombin generation in a mouse model of hemophilia 

[31]. In another animal model, a 50% to near complete reduction 

in antithrombin levels was achieved in a dose-dependent manner 

through weekly dosing [31]. This approach was then translated 

into an early clinical study, proving that roughly 50% reduction of 

antithrombin levels can be achieved in hemophilia patients 

through RNAi therapy (fitusiran) with lower doses and weekly 

dosing; and up to 80% reduction can be achieved with higher doses 

and monthly dosing [32]. In this trial of fitusiran with different 

doses evaluated, the mean peak plasma levels of the drug were ob-
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served after 2–6 h. The drug levels showed a rapid decrease in 

plasma, with a mean elimination half-life of roughly 3–5 h. Plasma 

levels of the drug increased in proportion to the dose applied. Anti-

fitusiran antibodies were not observed. Plasma exposures were 

similar after first and last doses, suggesting that there was no accu-

mulation of fitusiran after repeated administration. There was a 

clear association between the lowering of the antithrombin level 

and an increase in thrombin generation in patients with hemo-

philia, but not in healthy volunteers. This relationship was similar 

in participants with hemophilia A and hemophilia B. A reduction 

in the antithrombin level from baseline by 75% or more resulted in 

median peak thrombin values that correspond to the lower end of 

the range observed in healthy volunteers. The exploratory charac-

ter of the study allowed to identify a monthly, fixed dose of 80 mg 

that lead to a consistent reduction of antithrombin by 87%, sug-

gesting that a stable hemostatic protection can be achieved. In this 

first, small study (all in all 28 patients), adverse events were mainly 

mild to moderate and consisted of injection site reactions and tran-

sient liver enzyme elevations. Three various serious singular ad-

verse events were observed, but no thromboembolic complications 

were seen in these early studies. In a post-hoc analysis, an apparent 

lower bleeding rate was seen under fitusiran as compared to before 

study enrolment. All bleeding events were controlled with the use 

of regular hemophilia therapy (factor concentrates). However, de-

finitive conclusions on the frequency of toxicities and the efficacy 

are not possible due to the small sample size. An extension of this 

first study in order to evaluate the long-term safety and tolerability 

of fitusiran in male patients with moderate or severe hemophilia A 

(phase 1) or B (phase 2) is ongoing. In this extended study, how-

ever, a fatal thrombotic complication occurred in relationship with 

additional use of FVIII concentrate [33]. All fitusiran trials were 

halted transiently; the U.S. Food and Drug Administration (FDA) 

lifted the hold on clinical studies after trial’s protocol was amended 

to better mitigate risks [34]. 

FVIII Mimetic, Bispecific Antibody

Recently, the use of a bispecific antibody to act as aFVIII-mi-

metic agent, thus allowing to generate the tenase complex even in 

the absence of FVIII, has been established [35]. The antibody ini-

tially identified from a screen, hBS23, has been further engineered 

to create ACE910 or emicizumab [36]. Emicizumab is a humanized 

bispecific antibody that binds to and therefore bridges FIXa and 

FX. Because of its structure and the associated mode of action, 

emicizumab is not expected to induce or be affected by FVIII in-

hibitors. Also, antibodies to ACE910 do not seem to inhibit FVIII 

[36]. Further research has shown that the non-antigen-contacting 

regions in emicizumab (an IgG antibody) are potential and impor-

tant targets for engineering to improve the biological activity of 

IgG antibodies. For example, the tertiary structure determined by 

the inter-chain disulfide bonds in emicizumab was found to 

strongly affect the FVIII-mimetic activity [37].

Emicizumab has good subcutaneous bioavailability and a long 

half-life (4–5 weeks) in healthy volunteers [38]. Emicizumab has 

been shown to have in vivo hemostatic activity in non-human pri-

mates with acquired hemophilia [39] as well as in patients with 

congenital hemophilia [40]. 

Plasma emicizumab concentrations increase in a dose-depend-

ent manner, and reach steady state trough levels by week 12, with 

loading doses of 1–3 mg/kg and weekly doses of 0.3–1 mg/kg. With 

a loading and weekly dose of 3.0 mg/kg, a steady state is not ob-

served by week 12; rather, concentrations continue to increase [40].

Long-term application of emicizumab for up to 33 months, al-

though reported in a small cohort of 18 patients, seems to be well 

tolerated [41]. Early evidence suggests that emicizumab can be ap-

plied s.c. every 4 weeks [42]. In November 2017, the FDA approved 

emicizumab for routine prophylaxis to prevent or reduce the fre-

quency of bleeding episodes in adult and pediatric patients with 

hemophilia A (congenital FVIII deficiency) with FVIII inhibitors 

[43, 44]. 

Gene Therapy

Although the prevention of bleeding in hemophilic patients 

after a single therapeutic intervention and without the anticipated 

need for further intervention is an important goal, earlier ap-

proaches to gene therapy in hemophilia have not reached the an-

ticipated efficacy or were associated with actual or potential toxic-

ity [45, 46]. But progress was seen later on [47], and recently two 

landmark trials on successful gene therapy for hemophilia have 

been published, one in hemophilia A [48] and one in hemophilia 

B[LG1] [49]. These two trials – for now – seem to show that gene 

therapy in hemophilia is coming of age.

In the hemophilia A gene therapy trial, a single i.v. dose of an 

adeno-associated virus serotype 5 (AAV5) vector encoding a B-

domain-deleted human FVIII (AAV5-hFVIII-SQ) was used to 

treat 9 men with severe hemophilia A. Low- (1 patient), intermedi-

ate- (1 patient) and high-dose (7 patients) vector doses were used, 

and patients and were followed up for 1 year. FVIII levels remained 

low with the low or intermediate dose. In the high-dose cohort, the 

FVIII activity increased to more than 5 IU/dl 2–9 weeks after gene 

transfer in all 7 patients and normalized (and stayed normal, >50 

IU/dl) in 6 of them. Median annualized bleeding rate in the high-

dose cohort decreased from 16 events before to 1 event after gene 

transfer; and FVIII use for bleeding stopped in this cohort by week 

22. The primary adverse event was an elevation in the aspartate 

transaminase up to 1.5 times the upper limit of the normal range. 

No neutralizing antibodies to FVIII were detected [48].

In the hemophilia B gene therapy trial, a single i.v. dose of a 

single-stranded adeno-associated viral (AAV) vector was used to 

introduce a FIX Padua (factor IX-R338L) transgene in 10 men with 

hemophilia B who had FIX coagulant activity of 2% or less. No se-

rious adverse events occurred. Therapy induced vector-derived 

FIX coagulant activity that was sustained in all patients with a 

mean FIX activity of 34% (range 14–81%). On cumulative follow-

up of 492 weeks (individual follow-up 28–78 weeks), the annual-

ized mean bleeding rate decreased from 11.1 events/year (range 

0–48 events/year) to 0.4 events/year (range 0–4 events/year); factor 

use decreased accordingly (2,908 IU/kg (range 0–8,090 IU/kg) be-

fore and 49.3 IU/kg (range 0–376 IU/kg) after therapy). Eight of 10 
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patients did not use factor after therapy; and 9/10 patients did not 

bleed after therapy. Asymptomatic increases in liver enzymes oc-

curred in 2 patients and resolved with short-term prednisone treat-

ment [49].

Conclusions

New approaches to achieve a procoagulant response in hemo-

philia patients (other than coagulation factor concentrates) com-

prise inhibition of TFPI, downregulating antithrombin, and the use 

of a bispecific antibody to mimic the biological activity of FVIII. All 

of these approaches have been evaluated in clinical proof of princi-

ple studies in hemophilia patients. These studies have shown that all 

of these approaches are able to induce a procoagulant response or 

to shift the system more towards an attenuated bleeding phenotype. 

Therefore, all these approaches seem to be promising in order to 

further improve hemophilia care and allow continuous, long-term 

reversal of the hemophilic defect and/or phenotype. For the bispe-

cific antibody, this has already led to product approval for a well-

defined indication in the US. Gene therapy seems to be coming of 

age and is very promising; more data will be needed in order to ad-

equately judge potential long-term side effects. Also, more studies 

are needed in order to obtain reliable information which interven-

tion is most suited for which occasion in order to reliably increase 

the quality of hemophilia therapy.
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